Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM

نویسندگان

  • Mattias Calmunger
  • Ru Peng
  • Guocai Chai
  • Sten Johansson
  • Johan Moverare
  • Ru Lin Peng
چکیده

In this study an advanced method for investigation of the microstructure such as electron backscatter diffraction (EBSD) together with in-situ tensile test in a scanning electron microscope (SEM) has been used at room temperature and 300°C. EBSD analyses provide information about crystallographic orientation in the microstructure and dislocation structures caused by deformation. The in-situ tensile tests enabled the same area to be investigated at different strain levels. For the same macroscopic strain values a lower average misorientation in individual grains at elevated temperature indicates that less residual strain at grain level are developed compared to room temperature. For both temperatures, while large scatters in grain average misorientation are observed for grains of similar size, there seems to be a tendency showing that larger grains may accumulate somewhat more strains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Retained Austenite, Ferrite, Bainite and Martensite in the Microstructure of TRIP Steel

Transformation induced plasticity (TRIP) steels have a vast application in automotive industry because of theirhigh strength, high ductility and hence excellent energy absorption capacity. These characteristics of TRIPsteels are due to the existence of retained austenite in their microstructures in the ambient temperature, whichtransforms to the martensite phase during deforma...

متن کامل

Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjec...

متن کامل

Thermal stability and superplastic behaviour of an Al-Mg-Sc alloy processed by ECAP and HPT at different temperatures

An Al-3%Mg-0.2%Sc alloy was processed by ECAP and HPT at different temperatures. Afterwards, samples subjected to 10 turns of HPT at 300 and 450 K, 8 passes of ECAP at 300 K and 10 passes of ECAP at 600 K were annealed for 1 hour at 523 K and their mechanical properties and microstructure were examined using microhardness measurements and EBSD analysis. In addition, tensile specimens with simil...

متن کامل

In-Situ EBSD Observations of Bending for Single-Crystalline Pure Copper

To understand the material characteristics of singleand poly-crystals of pure copper, the respective relationships between crystallographic orientations and microstructures, and the bending and mechanical properties were examined. And texture distribution is also analyzed. A bending test is performed in a SEM apparatus and while its behaviors are observed in situ. Furthermore, some analytical r...

متن کامل

HOT CRACK FORMATION IN PURE CU AND CU-30%ZN ALLOY DURING IN SITU SOLIDIFICATION

The hot cracking susceptibility can be determined by establishing the transition temperature between brittle and ductile fracture at high temperature tensile testing of in situ solidified samples. High temperature tensile properties were determined for commercial cathodic pure Cu and Cu- 30%Zn alloy. The transition temperatures for pure Cu and Cu-30%Zn were evaluated from ultimate tensile stres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014